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Abstract

A well-known combinatorial identity involving sums of integer powers is
generalized. This generalization provides a new recurrence relation for the raw
moments of the binomial distribution. Further, a similar recurrence relation for
the central moments is derived. All these moments are recursively obtained from
the corresponding moment of order zero, i.e., the unity.

1. Introduction

The calculation of the sum of the k-th powers (k positive integer) of

the first n positive integers

Sun) = 35
i

has long interested mathematicians. For instance, the Bernoulli numbers

B,,, usually defined by their exponential generating function
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r - Zﬁxn,|x|<2n
*_1 n!
n=0

e

were first studied by Jakob Bernoulli while computing the sums Sj(n)
[2]. In this context, the famous Faulhaber’s formula (see, e.g., [7]),

published in a 1631 edition of Academiae Algebrae,

k+1
_ 1 3 (k41 j
Si(n) = mz;(_ 1) jk( j )Bk+1—jn )
j=
where &j, is the Kronecker delta, provides a closed form of the sum
S.(n) as a polynomial in n of degree k +1, the coefficients involving
Bernoulli numbers. A generalization of the Faulhaber’s formula to
complex powers with real part greater than -1 can be found in [9].
Regarding the positive integer case (k € N), among the many recent
works dealing with the sums Sj(n) (see, e.g., [3] and the references

contained therein), in this paper, we focus our attention on the following
recursion formula [5], which can be immediately derived using the

binomial theorem

r-1 r—1 n-1
n’ :1+Z[;J8k(n—l):1+2[;]2jk. 1.1)
k=0 k=0 j=1

Denoting mf = j*(1 < j < n, 0 <k <r), Equation (1.1) can be rewritten

as the recurrence relation

r—1 r n-1
mh =1+ ( j m?, (1.2)
fo\k i=1
where m? = jO =1forall j=1,...,n-1.

With this reformulation (1.2) of Equation (1.1), we can consider its
following natural generalization, obtained simply by multiplying the
right-hand side of (1.2) by a real parameter p(0 < p < 1), i.e.,
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r—1 r n-1

mh = p{u Z[ijmfp} (1.3)
k=01

where m?p =1forall j=1,...,n-1 and for all p € (0, 1].

Of course, for p =1 Equation (1.3) becomes Equation (1.2) (which is

equivalent to (1.1)), but what happens with Equation (1.3) when
0<p<1?

The main goal of this paper is to prove that for 0 < p < 1, the value
m,rl p obtained by Equation (1.3) is the r-th raw moment (about the

origin) in the binomial frequency distribution B(n, p), for all n > 2,
r>1 and 0 < p <1. In this way, the recursion formula (1.1) for power
sums is generalized to the new algebraic recursion formula (1.3) for
binomial moments.

By the way, we obtain a recurrence relation that generalizes (from
p =1/2 to an arbitrary parameter 0 < p < 1) the following recursive

formula, derived in [1], for the raw moments of the binomial distribution

B(n, % )

1
1

m" | =n|m’" m'! Ll (1.4)
n,E n, n—l,E

2

Moreover, we also obtain a recursion formula, similar to Equation (1.3),

for the central moments (about the mean np) of B(n, p).

Throughout this paper we shall denote the r-th raw moment of
X ~ B(n, p) by

n
my, , = E[X"] = Zkrpk(l —p)n_k(Zj for all r 21, m{®>’ =1 (1.5)
k=0

and the r-th central moment of X ~ B(n, p) by
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n
Whp = EL(X =np)' 1= D (k- np) p"(1 - p)”k(Zj for all r =1, ng'? =
jy
(1.6)

In particular, for the Bernoulli distribution B(1, p), we have, for all

rx1
1
ml = Zkr k(l_ )l—k 1 _ (1.7)
1,p p p k D, .
k=0

1
iy = Yl Py P2, = oY@ p) - o) b
k=0
=p(l-p) [(— 1 p ™+ (- p)’"’l]- (1.8)

As 1s well-known, one can compute higher order moments about the
origin of X ~ B(n, p) using its characteristic function or its moment

generating function; see, e.g., [8, 10]. A different combinatorial approach
for obtaining higher order raw binomial moments that uses the factorial

moments can be found in [6]. Let us denote by X- =X(X-1)--

(X —r +1) the falling factorial and by m,%y » = E[X "] the r-th factorial

moment of the binomial distribution B(n, p). Then, in that work, the

authors use the well-known expression for the Stirling numbers of the
second kind S(r, %) [4]

r

X" =38, k)x*

k=1

and take expectations in the both sides to get

r r

k E_k

mh , = ZS(r, kymy, , = ZS(r, k" p*,
k=1 k=1

since the k-th factorial moment of the binomial distribution B(n, p) is

given by m,";p = nkpk [8].
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Then, the central moments can be expressed in terms of the raw
moments simply using the binomial theorem [10].

Alternatively, the combinatorial formulas presented here for
obtaining the raw (central, respectively) moments of order r of X ~ B

(n, p) exclusively involve raw (central, respectively) moments of lower

orders, and they will enable one to obtain the general expressions of all
moments of B(n, p) from the moment of order zero, i.e., E [1] = 1.

In Section 2, we present a simple recursive combinatorial formula
from which all recurrence relations will be obtained. Sections 3 and 4 are,
respectively, devoted to obtain the recurrence relations for the binomial
raw and central moments. Finally, in Section 5, we present some closing
remarks.

2. A Basic Lemma

The next lemma provides us with a simple recursive combinatorial
formula, that will be used in the next two sections.

Lemma 2.1. Let n be a positive integer and ag, a1, ..., @, € R. Then
n n n-1 n-1
Zai[ j = Z(ai + ai+1)( . j 2.1)
4 i . i
1=0 1=0

Proof. For n = 1, the formula is obvious. Otherwise, we have
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In the next two sections, we get some recurrence relations for the raw
and central binomial moments, simply assigning the adequate values to

the parameters a; in Equation (2.1).

3. Raw Moments
In the next proposition, we establish a natural generalization of
Equation (1.4).
Proposition 3.1. Let n > 2 and 0 < p < 1. Then forall r > 1

r

my p = n(m}r;,—ll) - (1 - p)m;;%,p )

Proof. Using formula (2.1) with a;, = " p*(1 - p)* (0 < k < n), we

get
= n
My p = Zk’pk(l - p)"_k(kj
k=0
n-1 n-1
_ Z[krpk(l _ p)n—k +(k+ l)rpk+1 (1- p)ﬂ—(k-%—l)]( )
k=0 k
n-1 n-1
= (@-p)Y Kpta- p)("_l)_k( j
k=0 k
= (k1) R+1( 1
4 Ea1) k+11_ n—(k+1
;;)( Y p* (1~ p) S lhat
1% n
=(U=pmpp+ Zh”lph - p)”_h(h)
h=0
1
=1 -pmy_4 ,+ Py mrrLj}lw
and then

m,r;r}, =n(my, , —(—phmp_y ), ie, my , = n(mfl_ll) -(1- p)m;;:ll,p). 0



A GENERALIZATION OF A COMBINATORIAL ... 81

For proving Equation (1.3), we need the following lemma. The proof
of this lemma is analogous to the one of Proposition 3.1: We use again
formula (2.1), but now with a different algebraic manipulation.

Lemma 3.1. Let n > 2 and 0 < p <1. Then forall r > 1

r-1
r
mpy = My_q o, + pZ(kjm,]f_l,p. (3.1)
k=0

Proof. Using Equation (1.5) and formula (2.1) with qa; =i" pi

1-p) 0 <i < n), weget
r _ C .y n-i(
mn,p —le(l—p) (lj
_ [irpi(l Sy e +1)rpi+1(1_p)n(i+1)][n.—lj
/ l
n-1 ) ( 1) o
=ﬂ—mg;pﬂ—p) [ij

+ an:_l(i +1) pi(1 - p)(n—l)—i(n - 1)

i=0 L

=@1-pm)q1,+ pill + i(;)ik]pi(l _ p)(n—l)—i[n l— 1)

k=1

=1-pmp, +plp+0-p)J""
+ p;(ggikpi(l - p)("‘”‘i(n . 1)

r
™k
=(Q-pmy_4,+P+D E [kjmn_l’p
k=1
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r—1
') k
ERRPRTERVE)Y) [
k=0

r-1
r k
= m;‘L—l,p + pZ(kjmn_l,p. U
k=0

Using Lemma 3.1, we immediately obtain Equation (1.3) in the next
proposition.

Proposition 3.2. Let n > 2 and 0 < p < 1. Then forall r > 1

r-1 r n-1
my o, = p{l + Z[ijmfp}

k=0 j=1

Proof. Applying recursively formula (3.1) and using Equation (1.7),

we get

r—1 r—1
r r
r r k r k k
My = My_g p+ D ( jmn—l,p =my_ 9, +D E (kj (my_9, p +my_1 p)
k=0

r-1
™Yk k
==ml, +p2(kj(ml’p toetml )

k=0
r-1 r n—1 r—1 , n-1
_ ko _ k
AT I XIFENIEDY W) WM .
k=0 j=1 k=0 j=1

Example 3.1. Using Equation (1.3) and, as unique background, the

obvious fact that m;.) p = E[l]=1 for all j e N, we can recursively

compute all raw moments, e.g.,
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n-1 n-—1
p[l + Zl + Zij] =n’p?® + np(l - p),
=

j=1

Il
kS
VR
—
+
gl
N
—
+
W
kS
gl
N
~.
+
W
kS
[\
iR
~
[\
+
w
=
—~
—
|
c
~—
gl
N
~
N—

n®p® +3n*p*(1 - p)+ np(1 - p) (1 - 2p).

4. Central Moments

The formula (1.3), for the raw moments, can be established for

central moments pj, , of order r of B(n, p). Now the proof is similar to

the one used for Proposition 3.2, although a bit more complicated because

the mean jp of B(j, p) depends on the parameter j, 1 < j < n.

Lemma4.1. Let n > 2 and 0 < p < 1. Then forall r > 2

r—2

r .
Hp p = Hp-1,p + P - D) (.jsi,r“lnl,p’ (4.1)
=021\

where S; , = (- ) ip - p) " forall i = 0,1, ..., r - 1.

Proof. Using Equation (1.6) and formula (2.1) with a;, = (k - np)

p"(1 - p)" *(0 < k < n), and denoting, for short, [T, = p*(1 - p)Lk

n-1
( L jforeverykzo, 1,...,n-1, we get

Wn,p = Zn:(k - np) Pt - p)n_k[Z]

k=0

n-1
- ];) [(k B np)rpk(l - p)n—k + (k +1-— np)rpk+1 (1 _ p)n—(k+1)](nl; 1}
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S
—_

[(k = np)" (1 - p)+ (k- np +1) p]II,

k=0
n-1
{{(k-=(n-1p)-plQ-p)+[(k-(n-1p)+@1-p)]
k=0
n-1r r ) ) )
=331 oyl oy pyea - oy el
k=01=0
n-1
(k - (n - )p) Ty
k=0
n-1r-1 ) ) )
. ( j(k - 0pY | Py - ) - oy i)
k=01i=0
:MZ—Lp

3
,_;

r—

1
s ( j(k - 0pY e Py - ) a- oy i)

k=01i=0
= MZ—Lp
r—1 n-1 )
(e prasprea-prpl Y - - v
i=0 k=0
r-1
= Wpo1,p + Z@ [(— p) " 1-p)+ (- p)r’ip]uiz_l, p
1=0

pill

, o Ry
= Who1p + DA -D)Y J[( S L
i=0
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since, for i =1 : H}L—l,p =0, whilefor i =r-1:8,;, =0. O

In the next proposition, we present our recurrence relation for the

central moments.

Proposition 4.1. Let n > 2 and 0 < p < 1. Then for all r > 2

r—2 n-1
r .
Hn,p = P - p){SO,r + Z (i]si’r;u}p}, (4.2)

1=0,1#1
where S; , = (- ) ip - p) Y forall i = 0,2, ..., 7 - 2.

Proof. Applying recursively formula (4.1) and using Equation (1.8),

we get
r—2
M:L,p “nlp 1_ (jzrunlp
L:O,L¢1
r—2
r
=Hp-2,p T P (jzr“n2p+“n1p)
z=0,z¢1
r—2 )
=+ =ug, +p1-p) U S r(ud, p + -+ + Mhot, p)
1=0,1#1
r—2 r n-1
N\ R r—l] _ . i
S SR TR DI W YT
1=0,1#1 j=1

=p(1—p){So,r 5 U ”nzlujp} 0

1=0,1#1

Example 4.1. Using Equation (4.2) and, as unique background, the

obvious fact that u? » = E[1]=1 for all je N, we can recursively

compute all central moments, e.g.,



86 LUIS GONZALEZ and ANGELO SANTANA

0 n-1
wy,p = p(1 - p) {So2+ z (j zQZM]p}

1=0,1#1

n-1

1—p)[1+

u,p}pl—p)[nzq np(1 - p),

j=1

1 n-1
upp = pl-p {So,3+ Z [j zSZM]p}

1=0,i#1

n-1
= p(l-p)(1-2p)|1+ Zu(},pJ

n—1 n-1
= p(1-p)|(8p% ~8p +1)|[1+ le +6p(1 - p)Zj]
=1 =1
= np(1 - p)[1 + 3(n - 2)p(1 - p)].
5. Closing Remarks

A natural generalization of the binomial identity (1.1) led to a new
recurrence relation for the raw moments of the binomial distribution
(Propositions 3.2). A similar expression was derived for the central
moments (Proposition 4.1). The following properties of such two
expressions can be highlighted.
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Remark 5.1. Equations (1.3) and (4.2) enable one to obtain all raw
and central binomial moments, respectively, of any order r, simply
starting from the moment of order zero, i.e., the unity. Moreover, for
every given parameters, n, p, the recursive character of these formulas
naturally leads to easily implementable algorithms for rapidly computing
all (raw and central) moments of B(n, p).

Remark 5.2. The formulas (3.1) and (1.3), established for the raw
moments, can be generalized for general moments of order r of B(n, p)
about an arbitrary point a, denoted by M, ,(a). More precisely, taking

into account that

mi =M (0) (0<i<r1<j<n),

then simply writing M; p(a) instead of mj. » all along the proofs of

Lemma 3.1 and Proposition 3.2, we get the following generalizations of
Equations (3.1) and (1.3)

r-1
r .
M (@) = M p (@ pY (|t (@)
1=0

M (@) = p {1 + i@nl M}p(g)}

=0~/ =1

Remark 5.3. As Example 3.1 shows, the recursion formula (1.3)

r

expresses the raw binomial moments m,, ,

in terms of the power sums
Sp(n-1), in a similar way as Equation (1.1)-our starting point-

expresses n’ in terms of those power sums, e.g.,

mrll,p = P(l + ((1))50(” —1)),
o = o145 S -1)+ [ Jpsin -],

= o143 ol -0+ |ptz - it -1+ 3 o251

1
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